

Structural Amorphous Metals Leo Christodoulou DARPA/DSO

Compelling Opportunity

- A totally new class of materials has been discovered with a radical combination of properties
- There are unique, compelling and enabling applications in several key DoD areas (e.g., ship hulls, aircraft structures, penetrators, etc.)
- DARPA will have a program to develop the science and technology of this field, and demonstrate its utility in example challenge problems

Amorphous Metals are Fundamentally Different from Conventional Metals

Crystalline (Normal) Metals

- Long-range order
- Grain boundaries

Amorphous Metals

- NO long-range order
- NO grain boundaries

Amorphous materials exhibit unique properties

Atomic Arrangement in Crystalline and Amorphous Metals

• Micrograph shows:

- ➤ Interface between amorphous and crystalline metal
- >Atomic planes of crystalline metal
- ➤ Random arrangement of amorphous material
- **▶** Diffraction information

Since Their Discovery Metals have Relied on the Same Microstructural Constituents for their Properties

Polycrystalline

- Intersections of grains (grain boundaries) can be considered as "amorphous."
- Changes in grain size change the volume fraction of amorphous content

Structural Amorphous Metals Are New-to-the-World

Amorphous

- Amorphous Metals are NOT confined by limitations of crystalline materials
- Such an opportunity has NOT previously existed for structural materials.

Transformations from the Amorphous to the Crystalline State Offer Unprecedented Materials Design Freedom

- Short-range order
- NO grain boundaries

- Long-range order
- Grain boundaries

Why Amorphous Metals?

Amorphous Metals are in a Class of their Own!

New-to-the-World Structural Materials: Unexpected Strain Rate Response in SAM

- Dynamic toughness of SAM is <u>EXACTLY</u> the opposite of conventional materials -- toughness increases with strain rate
- Speculate that combination of high strength, hardness and dynamic fracture behavior will translate into useful naval and other structures

Wear and Corrosion

Challenge Problem:

Environmental conditions, e.g., marine environments, often induce degradation of properties due the presence of discontinuities within the material microstructure

Amorphous Materials:

- Do NOT have grain boundaries (no corrosion initiation sites)
- Exhibit high wear resistance (better than Si_3N_4)
- Are damage tolerant

Crystalline Localized Corrosion

Amorphous Steel

???

Amorphous Metals as New Penetrator Materials

SAM materials known to exhibit self sharpening behavior

Penetrator Materials: Amorphous Metals Provide New Options

To achieve high density SAM must be turned into a composite.

 $\rho_{DU} = 18.9 \ \rho_{BMG} = 5.9-8.0 \ g/cc.$ Tungsten is the obvious choice Monolithic SAM may be sufficient in some applications.